近年来,咳嗽声分类的研究通过对声学特征的处理产生了重大影响。它有效区分生产性咳嗽和非生产性咳嗽[8],从而检测变形的肺功能[9],促进肺炎的诊断[10]。许多咳嗽检测算法在临床行业中流行,用于识别和检测咳嗽声音,以获得有价值的见解。但是,从实时音频流中检测咳嗽的方法仍然很少。医生利用咳嗽声和非咳嗽声的良好辨别性[11]有助于早期诊断慢性咳嗽疾病。因此,实现早期检测和高级诊断的自动化框架将有助于医生治疗呼吸道感染。有鉴于此,提出了使用改进的卷积神经网络(CNN)对声音文件进行有用分类的慢性咳嗽检测方法。