REACT范式经过近一年的探索,让我们在很多领域有了非常广泛的应用,它确实提升了很多之前无法解决的问题,比如大模型虽然在语言理解和交互式决策方面在任务中表现出令人印象深刻的表现,但是如何让模型基于解释来使用 LLMs 以交错方式生成推理跟踪和特定于任务的操作 一直是一个问题,REACT范式提出了一种,模仿人类在“行动”和“推理”之间的这种紧密协同作用,并且模仿人类快速学习新任务并执行稳健的决策或推理,即使在以前看不见的情况下或面临信息不确定性。
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。