self.conv1 = nn.Conv2d(in_nc, nf, 7, stride, pad, bias=True) self.conv2 = nn.Conv2d(nf, nf, 3, stride, pad, bias=True) self.conv3 = nn.Conv2d(nf, nf, 3, stride, pad, bias=True) self.act = nn.ReLU(inplace=True) def forward(self, x): conv1_out = self.act(self.conv1(self.pad(x))) conv2_out = self.act(self.conv2(self.pad(conv1_out))) conv3_out = self.act(self.conv3(self.pad(conv2_out))) out = torch.mean(conv3_out, dim=[2, 3], keepdim=False) return out
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。