Python在日常生活中有很多应用场景,今天教大家如何使用Python实现预测NBA比赛结果,在此提供一些思路希望能对各位有所帮助。

数据选取

获取数据的链接为:www.basketball-reference.com

获取的数据内容为:

每支队伍平均每场比赛的表现统计;

每支队伍的对手平均每场比赛的表现统计;

综合统计数据;

2016-2017年NBA常规赛以及季后赛的每场比赛的比赛数据;

2017-2018年NBA的常规赛以及季后赛的比赛安排。

建模思路

主要利用数据内容的前四项来评估球队的战斗力。

利用数据内容的第五项也就是比赛安排来预测每场比赛的获胜队伍。

利用方式为:

数据内容的前三项以及根据数据内容的第四项计算的Elo等级分作为每支队伍的特征向量。

Elo等级分介绍(相关文件中有):

为方便起见,假设获胜方提高的Elo等级分与失败方降低的Elo等级分数值相等。

另外,为了体现主场优势,主场队伍的Elo等级分在原有基础上增加100。

代码流程

数据初始化;

计算每支队伍的Elo等级分(初始值1600);

基于数据内容前三项和Elo等级分建立2016-2017年常规赛和季后赛中每场比赛的数据集;

使用sklearn中的LogisticRegression函数建立回归模型;

利用训练好的模型对17-18年常规赛和季后赛的比赛结果进行预测;

将预测结果保存到17-18Result.CSV文件中。

开发工具

Python版本:3.5.4

相关模块:

pandas模块、numpy模块、sklearn模块以及一些Python自带的模块。

环境搭建

安装Python并添加到环境变量,pip安装需要的相关模块即可。

使用演示

在cmd窗口运行Analysis_NBA_Data.py文件即可:

结果:

到此这篇关于利用Python实现预测NBA比赛结果的文章就介绍到这了。