目录

线性方程组何时有解

先说结论:克莱姆法则用于求n元线性方程组的唯一解. 下面的定理1、定理2合称克莱姆法则(Cramer’s Rule).

数域K上n个方程的n元线性方程组:

\[\begin{cases} a_{11}x_1+a_{12}x_2+…+a_{1n}x_n=b_1,\\ a_{21}x_1+a_{22}x_2+…+a_{2n}x_n=b_2,\\ …\\ a_{n1}x_1+a_{n2}x_2+…+a_{nn}x_n=b_n \end{cases} \]

系数矩阵记A,增广矩阵\(\widetilde{A}=(A, b)\),行阶梯形矩阵\(\widetilde{J}=(J,d)\).

\[\begin{aligned} \widetilde{A}\xrightarrow{初等行变换}\widetilde{J}\\ A\xrightarrow{初等行变换}J \end{aligned} \]

1)方程组无解=>\(\widetilde{J}\)有非零行(0,…,0,d)=>J有零行=>\(|J|=0\),此时,出现“0=d(d≠0)”

2)有解时,有无穷解=>\(\widetilde{J}\)非零行数目r < n=>\(\widetilde{J}\)有零行=>J有零行=>\(|J|=0\)

3)有唯一解=>r=n => \(\widetilde{J}\)有n个非零行,但不能有“(0,…,0,d)”这样的非零行(否则无解)=>J有n个非零行=>J有n个主元=>\(|J|=c_{11}c_{22}…c_{nn}\neq 0\),形如:

\[J=\begin{vmatrix} c_{11} & c_{12} & … & c_{1n}\\ 0 & c_{22} & … & c_{2n}\\ … & … & … & …\\ 0 & 0 & … & c_{nn} \end{vmatrix} \]

其中,\(c_{11},c_{22},…,c_{nn}\)全都不为0

反过来,\(|J|\neq 0\)=>方程组有唯一解 成立吗?
\(|J|\neq 0\)=>J有n个主元=>J主对角线元素均非0=>\(x_n,…,x_2,x_1\)有唯一解=>方程组有唯一解

综上,方程组有唯一解当且仅当\(|J|\neq 0\).

由行列式性质(2、4、7)知,

\[A\xrightarrow{初等行变换}J \]

则有,

\[|J|=l|A|, l\neq 0 \]

\(|J|\neq 0\)当且仅当\(|A|\neq 0\).

可得定理:

定理1 数域K上n个方程的n元线性方程组有唯一解充要条件:其系数行列式(即系数行列式|A|)不为0.

证明见上.

推论1 数域K上n个方程的n元齐次线性方程组只有0解的充要条件:其系数行列式不为0. 从而有非0解充要条件是其系数行列式为0.

tips: 齐次线性方程组指常数项全为0,即\(b_1=b_2=…=b_n=0\)
非齐次线性方程组指常数项不全为0,即\(b_1,b_2,…,b_n\)至少有1个非0.

证明:2个结论
1)
由定理1知,方程组有唯一解充要条件:系数行列式不为0,即\(|A|\neq 0\)

对于齐次线性方程组,0显然是一个解
∴只有0解充要条件:系数行列式不为0,即\(|A|\neq 0\)

2)必要性 假设有非0解
∵0是齐次线性方程组的一个解
如果要有非0解,则必定不止1个解
\(|A|=0\)

充分性 假设\(|A|=0\)

此时,方程组要么无解,要么有无穷解
而对于齐次线性方程组,0显然是一个解
∴方程组有无穷解
∴除0解外,其他解必为非0解
故得证

求线性方程组的唯一解

线性方程组如果有唯一解,那么解是什么?

对于2元一次方程组,解为\((\frac{|B_1|}{|A|},\frac{|B_2|}{|A|})\)\(B_1, B_2\)是系数矩阵A的第1、2列换成常数项后所得矩阵.

对于n元一次方程组,可以将系数矩阵A的第j列换成常数项,得到\(B_j,j=1,2,…,n\),即:

\[B_j=\begin{pmatrix} a_{11} & … & a_{1,j-1} & b_1 & a_{1,j+1} & … & a_{1n}\\ a_{21} & … & a_{2,j-1} & b_2 & a_{2,j+1} & … & a_{2n}\\ … & … & … & … & … & … &…\\ a_{n1} & … & a_{n,j-1} & b_n & a_{n,j+1} & … & a_{nn}\\ \end{pmatrix} \]

定理2 n个方程组的n元线性方程组的系数行列式\(|A|\neq 0\)时,其唯一解为

\[(\frac{|B_1|}{|A|},\frac{|B_2|}{|A|},…,\frac{|B_n|}{|A|}) \]

证明:
由定理1,\(|A|\neq 0\)时方程组有唯一解.

\(x_i=\frac{|B_j|}{|A|}(j=1,2,…,n)\)代入第i个方程左边:

\[\begin{aligned} &a_{i1}x_1+a_{i2}x_2+…+a_{in}x_n\\ =&\sum_{j=1}^na_{ij}\frac{|B_j|}{|A|}\\ =&\frac{1}{|A|}\sum_{j=1}^na_{ij}|B_j|\\ =&\frac{1}{|A|}\sum_{j=1}^na_{ij}\sum_{k=1}^nb_k(B_{j})_{kj}\\ =&\frac{1}{|A|}\sum_{j=1}^na_{ij}\sum_{k=1}^nb_kA_{kj}\\ =&\frac{1}{|A|}\sum_{j=1}^n\sum_{k=1}^na_{ij}b_kA_{kj}\\ =&\frac{1}{|A|}\sum_{k=1}^n\sum_{j=1}^na_{ij}b_kA_{kj}\\ =&\frac{1}{|A|}\sum_{k=1}^nb_k(\sum_{j=1}^na_{ij}A_{kj})\\ =&\frac{1}{|A|}b_i|A|=b_i \end{aligned} \]

补充说明:
前面高等代数笔记:行列式提到过,行列式|A|按第i行展开:

\[|A|=\sum_{j=1}^na_{ij}A_{ij} \]

其中,\(A_{ij}\)是矩阵A的(i,j)元的代数余子式.

因此,\(|B_j|\)按第j列展开:

\[|B_j|=\sum_{k=1}^nb_k(B_j)_{kj} \]

其中,\(b_k\)\(B_j\)的第j列第k行元素,也是方程组第k个方程的常数项.

\(A\)替换第j列为常数项 -> \(B_j\)

\(|B_j|\)\(|A|\)的第j列代数余子式相同

\[|B_j|=\sum_{k=1}^nb_k(B_j)_{kj}=\sum_{k=1}^nb_kA_{kj} \]

由前面高等代数笔记:行列式知,

\[\sum_{j=1}^na_{ij}A_{kj}=\begin{cases} |A|, &k=i\\ 0, &k\neq i \end{cases} \]

又k=1,2,..,n, i∈[1,n]
∴只有当k=i时,\(\sum_{j=1}^na_{ij}A_{kj}\)取值|A|,其他情形取值0

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。