作为一个高阶程序员,多线程是必须掌握的知识。在python中有一个线程池模块可以让开发者更加简单快速的进行线程池的使用,接下来这篇文章就根据此来介绍python怎么进行多线程操作。
1、线程池模块
引入
from concurrent.futures import ThreadPoolExecutor
2、使用线程池
一个简单的线程池使用案例
from concurrent.futures import ThreadPoolExecutor
import time
pool = ThreadPoolExecutor(10, 'Python')
def fun():
time.sleep(1)
print(1, end='')
if __name__ == '__main__':
# 列表推导式
[pool.submit(fun) for i in range(20) if True]
from concurrent.futures import ThreadPoolExecutor
import time
pool = ThreadPoolExecutor(10, 'Python')
def fun(arg1,arg2):
time.sleep(1)
print(arg1, end=' ')
print(arg2, end=' ')
if __name__ == '__main__':
# 列表推导式
[pool.submit(fun,i,i) for i in range(20) if True]
# 单个线程的执行
task = pool.submit(fun,'Hello','world')
# 判断任务执行状态
print(f'task status {task.done()}')
time.sleep(4)
print(f'task status {task.done()}')
# 获取结果的函数是阻塞的,所以他会等线程结束之后才会输出
print(task.result())
3、获取结果
阻塞等待
print(task.result())
批量获取结果
for future in as_completed(all_task):
data = future.result()
阻塞主线程,等待执行结束再执行下一个业务
# 等待线程全部执行完毕
wait(pool.submit(fun,1,2),return_when=ALL_COMPLETED)
print('')
以上就是python怎么进行多线程操作的详细内容,更多Python高级语法的使用介绍请关注W3Cschool其它相关文章!
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。