随着数据隐私和安全问题的日益突出,传统的集中式机器学习方法面临着巨大的挑战。联邦学习(Federated Learning)作为一种新兴的分布式机器学习方法,通过将模型训练过程分布在多个参与者设备上,有效解决了数据隐私和安全问题。然而,在实际应用中,不同参与者可能拥有不同的数据分布和计算能力,导致使用的模型和训练方法存在异构性。本文将详细介绍联邦学习中的异构模型集成与协同训练技术,包括基本概念、技术挑战、常见解决方案以及实际应用,结合实例和代码进行讲解。
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。