信息增益描述了在得知已知信息(特征X)的情况下能够使得类别Y的信息的不确定性减少的程度。比如说,在不知道任何样本的特征信息情况下,我们知道Y的不确定性程度为0.7,现在你知道了样本的某个特征
\(x_i\),那么假设Y的不确定性程度减少为0.5,那么所得的信息增益即为0.2,这表示特征x对减少Y的不确定性程度的贡献。

在上面的例子中,我们提到了重要的两点,第一个是Y的不确定性程度,第二个是Y在X为某个特征时的不确定性程度。那么该怎么计算它们?